Heat Kernels, Old and New

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new properties of biharmonic heat kernels

Contrary to the second order case, biharmonic heat kernels are sign-changing. A deep knowledge of their behaviour may however allow to prove positivity results for solutions of the Cauchy problem. We establish further properties of these kernels, we prove some Lorch-Szegö-type monotonicity results and we give some hints on how to obtain similar results for higher polyharmonic parabolic problems.

متن کامل

Heat Kernels and Cycles

We use the heat kernel on a compact oriented Riemannian manifold to assign to a sequence of cycles C1, . . . , Ck a real number (C1, . . . , Ck), provided the Ci satisfy certain conditions. If k = 2 then (C1, C2) will be the ordinary topological linking number, an integer, while if k ≥ 3 then (C1, . . . , Ck) will involve also iterated integrals of harmonic forms representing the Poincare duals...

متن کامل

Geodesics and Approximate Heat Kernels

We use the gradient flow on the path space to obtain estimates on the heat kernel k(t, x, y) on a complete Riemannian manifold. This approach gives a sharp formula for the small-time asymptotics of k(t, x, y) and an upper bound for all time for pairs x and y are not conjugate. It also gives a theorem about convolutions of heat kernels that makes precise the intuition that heat flows in packets ...

متن کامل

Heat Kernels of Metric Trees and Applications

We consider the heat semigroup generated by the Laplace operator on metric trees. Among our results we show how the behavior of the associated heat kernel depends on the geometry of the tree. As applications we establish new eigenvalue estimates for Schrödinger operators on metric trees.

متن کامل

Heat kernels and thermodynamics in Rindler space.

We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES

سال: 2017

ISSN: 2304-7895,2304-7909

DOI: 10.21915/bimas.2017101